Localization of multivariate interpolation and smoothing methods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolation and smoothing

Abstract. Smoothing is omnipresent in astronomy, because almost always measurements performed at discrete positions in the sky need to be interpolated into a smooth map for subsequent analysis. Still, the statistical properties of different interpolation techniques are very poorly known. In this paper, we consider the general problem of interpolating discrete data whose location measurements ar...

متن کامل

Smoothing Multivariate Performance Measures

A Support Vector Method for multivariate performance measures was recently introduced by Joachims (2005). The underlying optimization problem is currently solved using cutting plane methods such as SVM-Perf and BMRM. One can show that these algorithms converge to an accurate solution in O ( 1 λ ) iterations, where λ is the trade-off parameter between the regularizer and the loss function. We pr...

متن کامل

Generalized Recursive Multivariate Interpolation

A generalized recursive interpolation technique for a set of linear functionals over a set of general univariate basis functions has been previously developed. This paper extends these results to restricted multivariate interpolation over a set of general multivariate basis functions. When the data array is a suitable configuration (e.g., an ^-dimensional simplex), minimal degree multivariate i...

متن کامل

On multivariate polynomial interpolation

We provide a map Θ 7→ ΠΘ which associates each finite set Θ of points in C with a polynomial space ΠΘ from which interpolation to arbitrary data given at the points in Θ is possible and uniquely so. Among all polynomial spaces Q from which interpolation at Θ is uniquely possible, our ΠΘ is of smallest degree. It is also Dand scale-invariant. Our map is monotone, thus providing a Newton form for...

متن کامل

On Multivariate Lagrange Interpolation

Lagrange interpolation by polynomials in several variables is studied through a finite difference approach. We establish an interpolation formula analogous to that of Newton and a remainder formula, both of them in terms of finite differences. We prove that the finite difference admits an integral representation involving simplex spline functions. In particular, this provides a remainder formul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 1996

ISSN: 0377-0427

DOI: 10.1016/0377-0427(96)00036-2